Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Neuroreport ; 35(7): 486-498, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526939

RESUMO

This study aimed to investigate the effects of SIRT1 modulation on heroin addiction-like behavior and its possible biological mechanisms. Wild-type C57BL/6J and Sirt1loxp/loxp D1-Cre mice were used in this experiment, and Sirt1 loxp/loxp D1-Cre(-) mice were used as a control for conditional knockout mice. Mice were divided into saline control and heroin-dependent groups. Behavioral methods were used to record the withdrawal response, conditioned place preference (CPP) changes, and open field test results. Transmission electron microscopy (TEM) was used to observe the structure of autophagosomes in nucleus accumbens (NAc) neurons. The expression of SIRT1 and autophagy-related proteins and genes, such as LC3Ⅱ, ATG5 , and ATG7 , was detected in the NAc of each mouse group via western blot, real-time quantitative PCR (qPCR) analyzes, and immunofluorescence. The results of this experiment showed that compared with the saline group, mice in the wild-type heroin-dependent group showed marked withdrawal symptoms, with more autophagosomes observed in NAc via TEM. Compared with wild-type and Sirt1loxp/loxp D1-Cre(-) heroin-dependent groups, CPP formation was found to be reduced in the conditional knockout mouse group, with a significant decrease in spontaneous activity. Western blot, qPCR, and immunofluorescence results indicated that the expression of LC3Ⅱ, ATG-5, and ATG-7 was significantly reduced in the NAc of the Sirt1loxp/loxp D1-Cre(+) group. It was still, however, higher than that in the saline control group. These results suggest that inhibition of Sirt1 expression may prevent heroin-induced addiction-related behaviors via reducing D1 neuronal autophagy.


Assuntos
Dependência de Heroína , Núcleo Accumbens , Camundongos , Animais , Dependência de Heroína/metabolismo , Heroína , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Autofagia
2.
Medicine (Baltimore) ; 101(33): e30093, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984180

RESUMO

Orexins regulate the reward-seeking pathway and also play a role in drug addiction. The aim of this study was an investigation of the changes in serum level of orexin-A as well as changes in the functional brain network in heroin use disorder (HUD) patients undergoing harm reduction therapy (HRT). Twenty-five HUD patients undergoing HRT that included methadone and buprenorphine, and 31 healthy control (HC) subjects, were enrolled for this study. Serum orexin-A levels and brain-derived neurotrophic factor were measured with assay kits. The functional brain network in HUD patients and HC was investigated and assessed using seed-based analysis and functional brain MRI scans. t Tested orexin-A levels were found to be significantly higher in HUD patients undergoing HRT than in HCs (P < .05). Analysis showed the functional activity of the right ventral anterior insula (RVAI) in HUD patients to be significantly lower than in HCs (P < .05, Family-Wise Error) corrected). In addition, the internetwork functional connectivity was significantly lower in the left nucleus accumbens and left dorsal anterior insula in the HUD subjects than in HCs (P < .05, Family-Wise Error corrected). In this study, no significant correlation between orexin-A levels and functional brain networks was found. However, the results suggest that HRT might increase orexin-A levels and decrease functional activity in RVAI in HUD patients.


Assuntos
Redução do Dano , Dependência de Heroína , Encéfalo/diagnóstico por imagem , Buprenorfina/uso terapêutico , Heroína , Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/metabolismo , Humanos , Metadona/uso terapêutico , Orexinas
3.
Neurotox Res ; 40(4): 1070-1085, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35759084

RESUMO

Heroin is a highly addictive drug that causes axonal damage. Here, manganese-enhanced magnetic resonance imaging (MEMRI) was used to dynamically monitor axonal transport at different stages of heroin addiction. Rat models of heroin addiction (HA) and prolonged heroin addiction (PHA) were established by injecting rats with heroin at different stages. Heroin-induced learning and memory deficits were evaluated in the Morris water maze (MWM), and MEMRI was used to dynamically evaluate axonal transport in the olfactory pathway. The expression of proteins related to axonal structure and function was also assessed by Western blotting. Transmission electron microscopy (TEM) was used to observe ultrastructural changes, and protein levels of neurofilament heavy chain (NF-H) were analyzed by immunofluorescence staining. HA rats, especially PHA rats, exhibited worse spatial learning and memory than control rats. Compared with HA rats and control rats, PHA rats exhibited significantly longer escape latencies, significantly fewer platform-location crossings, and significantly more time in the target quadrant during the MWM test. Mn2+ transport was accelerated in HA rats. PHA rats exhibited severely reduced Mn2+ transport, and the axonal transport rate (ATR) was significantly lower in these rats than in control rats (P < 0.001). The levels of cytoplasmic dynein and kinesin-1 were significantly decreased in the PHA group than in the control group (P < 0.001); additionally, the levels of energy-related proteins, including cytochrome c oxidase (COX) IV and ATP synthase subunit beta (ATPB), were lower in the PHA group (P < 0.001). The brains of heroin-exposed rats displayed an abnormal ultrastructure, with neuronal apoptosis and mitochondrial dysfunction. Heroin exposure decreased the expression of NF-H, as indicated by significantly reduced staining intensities in tissues from HA and PHA rats (P < 0.05). MEMRI detected axonal transport dysfunction caused by long-term repeated exposure to heroin. The main causes of axonal transport impairment may be decreases in the levels of motor proteins and mitochondrial dysfunction. This study shows that MEMRI is a potential tool for visualizing axonal transport in individuals with drug addictions, providing a new way to evaluate addictive encephalopathy.


Assuntos
Transporte Axonal , Dependência de Heroína , Animais , Transporte Axonal/fisiologia , Encéfalo/metabolismo , Heroína/metabolismo , Heroína/toxicidade , Dependência de Heroína/diagnóstico por imagem , Dependência de Heroína/metabolismo , Dependência de Heroína/patologia , Cinesinas , Imageamento por Ressonância Magnética/métodos , Ratos
4.
Life Sci ; 287: 120103, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743944

RESUMO

BACKGROUND: Heroin is a semi-synthetic opioid that is commonly abused drugs in the world. It can cause hepatic injury and lead to multiple organs dysfunction to its addicts. Only a few reports exist on the metabolic changes and mechanisms in the liver of heroin-addicted mice with hepatic injury. METHODS: Twelve adult male Kunming mice (30-40 g) were divided into two groups randomly. The mice in the heroin-addicted group were injected subcutaneously in the first ten days with an increased dosage of heroin from 10 mg/kg to 55 mg/kg. The dosage was then stabilized at 55 mg/kg for three days. The control group was injected with the same amount of saline in the same manner. The hepatic injury was confirmed through the combination of histopathological observation and aminotransferase (AST) and alanine aminotransferase (ALT) determination. The withdrawal symptoms were recorded and used for assessment of heroin addiction. Eventually, liver metabolic biomarkers of heroin-addicted mice with hepatotoxicity were measured using UHPLC-MS/MS. RESULTS: Biochemical analysis and histopathological observation showed that heroin-addicted mice had a liver injury. The liver metabolites of heroin-addicted mice changed significantly. Metabonomics analysis revealed 41 metabolites in the liver of addicted heroin mice as biomarkers involving 34 metabolic pathways. Among them, glutathione metabolism, taurine and hypotaurine metabolism, vitamin B2 metabolism, riboflavin metabolism, and single-carbon metabolism pathways were markedly dispruted. CONCLUSIONS: Heroin damages the liver and disrupts the liver's metabolic pathways. Glutathione, taurine, riboflavin, 4-pyridoxate, folic acid, and methionine are important metabolic biomarkers, which may be key targets of heroin-induced liver damage. Thus, this study provides an in-depth understanding of the mechanisms of heroin-induced hepatotoxicity and potential biomarkers of liver damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dependência de Heroína/metabolismo , Heroína/toxicidade , Fígado/metabolismo , Metabolômica/métodos , Fenótipo , Animais , Animais não Endogâmicos , Biomarcadores/sangue , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dependência de Heroína/sangue , Dependência de Heroína/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos
5.
Addict Biol ; 26(5): e13013, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33619816

RESUMO

Akt is initially identified as one of the downstream targets of phosphatidylinositol-3 kinase (PI3K) and is involved in morphine reward and tolerance. However, whether phospholyration of Akt (p-Akt) mediates heroin relapse remains unclear. Here, we aimed to explore the role of p-Akt in the nucleus accumbens (NAc) in cue-induced heroin-seeking behaviors after withdrawal. First, rats were trained to self-administer heroin for 14 days, after which we assessed heroin-seeking behaviors induced by a context cue (CC) or by discrete conditioned cues (CS) after 1 day or 14 days of withdrawal. We found that the active responses induced by CC or CS after 14 days of withdrawal were higher than those after 1 day of withdrawal. Meanwhile, the expression of p-Akt in the NAc was also greatest when rats were exposed to the CS after 14 days of withdrawal. Additionally, a microinjection of LY294002, an inhibitor of PI3K, into the NAc inhibited the CS-induced heroin-seeking behaviors after 14 days of withdrawal, paralleling the decreased levels of p-Akt in the NAc. Finally, Akt1 or ß-arrestin 2 was downregulated via a lentiviral injection to assess the effect on heroin seeking after 14 days of withdrawal. CS-induced heroin-seeking behavior was inhibited by downregulation of Akt1, but not ß-arrestin 2, in the NAc. These data demonstrate that Akt phosphorylation in the NAc may play an important role in the incubation of heroin-seeking behavior, suggesting that the PI3K/Akt pathways may be involved in the process of heroin relapse and addiction.


Assuntos
Comportamento de Procura de Droga/efeitos dos fármacos , Heroína/farmacologia , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Sinais (Psicologia) , Dependência de Heroína/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração , Síndrome de Abstinência a Substâncias/metabolismo
6.
Drug Alcohol Depend ; 219: 108485, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33360853

RESUMO

INTRODUCTION: The striatum mediates reward processing in addiction, and previous fMRI (functional Magnetic Resonance Imaging) studies have revealed abnormal striatofrontal functional connectivity in heroin addiction. However, little is known about whether there is abnormal structural connectivity of the striatal circuit in heroin addiction. This study investigated the structural connectivity of striatal circuits in abstinent heroin-dependent individuals (HDIs) without methadone treatment. METHODS: Forty-three (age: 38.8 ± 7.1) male HDIs and twenty-one (age: 42.4 ± 7.9) matched healthy controls underwent high-resolution T1 and whole-brain diffusion tensor imaging (64 directions) magnetic resonance imaging. Connectivity-based seed classification probabilistic tractography was used to detect the tract strengths of striatal circuits with 10 a priori target masks. Tract strengths were compared between groups and correlated with impulsivity behavior, evaluated using the Barratt Impulsivity Scale (BIS), and craving, measured on visual analogue scale (VAS). RESULTS: HDIs showed significantly weaker tract strength of the left striatum-medial orbitofrontal cortex (mOFC) (Bonferroni corrected, p < 0.05/20 = 0.0025) and significantly higher BIS total, attention, motor, and non-planning scores (Bonferroni corrected, p < 0.05/4 = 0.0125) than controls. In HDIs, negative correlations were observed between the left striatum- mOFC tract strengths and the BIS total, attention and non-planning scores (r1=-0.410, p1 = 0.005; r2=-0.432, p2 = 0.003; r3=-0.506, p3<0.001) and between the right striatum-posterior cingulate cortex (PCC) tract strengths and craving scores (r=-0.433, p = 0.009) in HDIs. CONCLUSION: HDIs displayed decreased structural connectivity of the striatum-mOFC circuit and higher impulsivity. Higher impulsive behavior was associated with decreased left striatal circuit connectivity. These findings suggest that the striatal circuit tract strengths might be a novel potential biomarker in heroin and, potentially, general opioid addiction.


Assuntos
Fissura/fisiologia , Dependência de Heroína/psicologia , Heroína , Adulto , Comportamento Aditivo , Biomarcadores , Encéfalo/fisiopatologia , Mapeamento Encefálico , Estudos de Casos e Controles , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Imagem de Tensor de Difusão , Giro do Cíngulo/fisiopatologia , Dependência de Heroína/metabolismo , Humanos , Comportamento Impulsivo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Recompensa
7.
Urol J ; 17(6): 638-644, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32748386

RESUMO

PURPOSE: Recreational use of illicit drugs is one of the main factors affecting male fertility. However, the mechanisms of heroin smoke-associated damage to mature spermatozoa are still completely unknown. The aim of this study was to concomitantly examine the levels of protamine-2 gene and protein concentrations, the amount of miRNA-122 in seminal plasma and semen analysis findings in heroin-addicted men. MATERIALS AND METHODS: In a case control study, twenty-four fertile men that lacked any recreational drug abuse were considered as the healthy group, and 24 addicted men who used only heroin for at least four months were selected as the addicted group. Semen samples were gathered by masturbation after 2 - 5 days of sexual abstinence. Following the preparation of a semen analysis by computer-assisted sperm analysis according to WHO (2010), the level of protamine-2 gene expression in sperm and miRNA-122 in seminal plasma was measured using real-time sqPCR. Also, protamine-2 protein concentrations were quantified by nuclear protein extraction, SDS-Page and western blotting. RESULTS: Among the studied variables, body mass index (27.75±0.88 vs. 22.30±0.36, p=0.001), seminal pH (7.79±0.06 vs. 7.58±0.06, p=0.003), white blood cell count in semen (1.69±0.41 vs. 8.61±1.73, p=0.001), motility (65.51±2.57 vs. 41.96±3.58, p=0.001) and survival rate (87.41±1.00 vs. 71.50±4.59, p=0.002) of sperm cells was significantly different between the healthy and addicted groups. In addition, the levels of protamine-2 gene and protein expression in the addicted group (0.05±0.02 and 0.10±0.02, respectively) were significantly lower than the healthy group (3.59±0.94 and 0.27±0.06, respectively) (p=0.002 and p=0.017, respectively). Seminal miRNA-122 levels in addicted men (3.51±0.73) were statistically higher than in healthy men (1.52±0.54) (p=0.034). However, there were some significant relationship between the studied parameters and addiction (p<0.05). CONCLUSION: This is one study on human infertility that evaluates the effects of heroin on protamine deficiency and seminal small RNAs expression levels. Heroin abuse may lead to male infertility by causing leukocytospermia, asthenozoospermia, protamine deficiency, and seminal plasma miRNA profile alteration.


Assuntos
Dependência de Heroína/metabolismo , MicroRNAs/análise , Protaminas/análise , Protaminas/genética , Análise do Sêmen , Sêmen/química , Espermatozoides/química , Adulto , Estudos de Casos e Controles , Correlação de Dados , Humanos , Masculino
8.
J Clin Lab Anal ; 34(11): e23486, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32748469

RESUMO

BACKGROUND: Drug addiction is an uncontrolled, chronic, and recurrent encephalopathy that presently lacks specific and characteristic biomarkers for diagnosis and treatment. As regulators of gene expression, microRNAs (miRNAs) are increasingly used for diagnostic and prognostic purposes in various disease states. Previous studies indicated that miRNAs play important roles in the development and progression of drug addictions, including addiction to methamphetamine, cocaine, alcohol, and heroin. METHODS: We identified significant miRNAs using the microarray method and then validated the hsa-miR-181a expression levels in 53 heroin addiction patients and 49 normal controls using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential associations between transcriptional levels in heroin addiction patients and their clinicopathological features were analyzed. RESULTS: A total of 2006 miRNAs were differentially expressed between heroin addiction patients and normal controls. The top 10 up-regulated miRNAs in patients were hsa-miR-21a, hsa-miR-181a, hsa-miR-4459, hsa-miR-4430, hsa-miR-4306, hsa-miR-22-3P, hsa-miR-486-5P, hsa-miR-371b-5P, hsa-miR-92a-3P, and hsa-miR-5001-5P. The top 10 down-regulated miRNAs in patients were hsa-miR-3195, hsa-miR-4767, hsa-miR-3135b, hsa-miR-6087, hsa-miR-1181, hsa-miR-4785, hsa-miR-718, hsa-miR-3141, hsa-miR-652-5P, and hsa-miR-6126. The expression level of hsa-miR-181a in heroin addiction patients was significantly increased compared with that in normal controls (P < .001). The area under the receiver operating characteristic curve of hsa-miR-181a was 0.783, the sensitivity was 0.867, and the specificity was 0.551. CONCLUSIONS: The increased expression of hsa-miR-181a in the plasma of heroin patients may be a consequence of the pathological process of heroin abuse. This study highlights the potential of hsa-miR-181a as a novel biomarker for the diagnosis of heroin addiction.


Assuntos
Dependência de Heroína , MicroRNAs , Adulto , Biomarcadores/sangue , China , Dependência de Heroína/sangue , Dependência de Heroína/epidemiologia , Dependência de Heroína/metabolismo , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Transcriptoma/genética , Regulação para Cima/genética , Adulto Jovem
9.
Artigo em Inglês | MEDLINE | ID: mdl-32673834

RESUMO

A common phenomenon shows that ingestion of opium poppy shell-containing drugs can result in a "false-positive" urinalysis test result for mandatory or workplace heroin abuse screening. Owing to the short detection window (8 h in urine) of the characteristic heroin metabolite 6-monoacetylmorphine (6-MAM) confirmation or exclusion of heroin abusers still presents major challenges for toxicologists. In this work, we developed an ultra-performance liquid chromatography-time-of-flight mass spectrometry method (UPLC-TOF-MS) with online data acquisition and multiple post-data-mining technologies combined with a multivariate statistical and batch validation analysis workflow to assess the characteristic urine metabolites of heroin abusers. Based on the proposed methods, 28 characteristic metabolites were structurally identified, and their fragmentation patterns and metabolite pathways were also summarized. Correlation analysis was used to investigate the internal relationship and similarities among the identified metabolites, and seven representative metabolites were selected as "Target-metabolites". Multi-batch urine of samples of heroin abusers were certified based on the UPLC-MS/MS method for further validation of the practicability of using this method for routine analysis. Overall, the target-metabolites can be utilized as assistant "biomarkers" in workplace or mandatory drug screenings. This approach encourages further studies on the development of the "false-positive" identification system.


Assuntos
Dependência de Heroína/metabolismo , Dependência de Heroína/urina , Heroína/metabolismo , Heroína/urina , Detecção do Abuso de Substâncias/métodos , Cromatografia Líquida de Alta Pressão/métodos , Mineração de Dados/métodos , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Derivados da Morfina/metabolismo , Derivados da Morfina/urina , Reprodutibilidade dos Testes
10.
Neurosci Lett ; 721: 134819, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32032749

RESUMO

It is widely reported that drug addiction involves the strengthening of specific reward circuits through N-methyl-d-aspartic acid receptor (NMDAR)-dependent synaptic potentiation, and several lines of evidence strongly implicate NMDA receptor 2 (NR2) subunits in drug abuse. To explore the potential mechanism of heroin dependence, this study examined changes in the expression levels of NR2 subunits NR2A-D in the prelimbic (PL) region of the medial prefrontal cortex (mPFC) after repeated heroin administration and subsequent abstinence. The conditioned place preference (CPP) test confirmed successful induction of heroin dependence and withdrawal. Western blotting and qRT-PCR revealed no differences in NR2A subunit expression among heroin-exposure, heroin-withdrawal, and control group rats; in contrast, expression of NR2B was significantly higher in the heroin-exposure group, whereas expression levels of NR2C and NR2D were significantly higher in the heroin-withdrawal group relative to the controls. Further studies are needed to identify the functional significance based on alterations of NR2 subunits.


Assuntos
Dependência de Heroína/metabolismo , Heroína/efeitos adversos , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Expressão Gênica , Dependência de Heroína/genética , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Síndrome de Abstinência a Substâncias/genética
11.
Eur Addict Res ; 26(2): 103-108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940647

RESUMO

AIMS: Childhood trauma is of importance for the manifestation of substance-related disorders and maintenance of hypothalamic-pituitary-adrenal (HPA)-axis disorders. Since stress plays a crucial role in opioid compliance and craving, we investigated the immediate effects of diacetylmorphine application on the HPA axis. In particular, adrenocorticotropic hormone (ACTH) and cortisol secretion, as well as satiety regulating proopiomelanocortin peptides α-melanocyte-stimulating hormone (MSH) and ß-endorphin (END) in a cohort of opioid-dependent patients in diamorphine maintenance treatment concerning the clinical severity of their childhood trauma. METHODS: We compared the serum levels of ACTH, cortisol, MSH, and END in 15 opioid-dependent patients. All participants received treatment with diamorphine and were observed at 5 timepoints before and after injection. We split the cohort into 2 subgroups concerning childhood trauma measured by the Childhood Trauma Questionnaire. RESULTS: Splitting in 2 subgroups for mild (5) and severe trauma (10), we found that while both groups show a significant reduction of ACTH and cortisol levels over time, slopes display different progressions over time for cortisol (F[1.6] = 9.38, p = 0.02), while remaining identical for ACTH (F[1.6] = 1.69, p = 0.24). Also, levels of both MSH and END were significantly lower in severely traumatized patients. CONCLUSIONS: For the first time, we present a detailed representation of stress- and addiction-related proteins for the first 5 h after diamorphine application, demonstrating the interrelationship between stress hormones and childhood trauma as well as its potential effects on the progression of addictions such as opioid dependence.


Assuntos
Experiências Adversas da Infância , Dependência de Heroína , Heroína , Estresse Psicológico/psicologia , Ferimentos e Lesões/psicologia , Hormônio Adrenocorticotrópico/sangue , Adulto , Criança , Estudos de Coortes , Feminino , Heroína/farmacologia , Heroína/uso terapêutico , Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/metabolismo , Humanos , Hidrocortisona/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Pessoa de Meia-Idade , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Inquéritos e Questionários/estatística & dados numéricos , beta-Endorfina/sangue
12.
Mol Med Rep ; 21(1): 405-412, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31939625

RESUMO

Heroin addiction is a chronic relapsing brain disorder with negative social consequences. Histone acetylation serves a role in drug­induced behavior and neuroplasticity impairment. Brahma/SWI2­related gene­1 (BRG1) participates in cerebellar development, embryogenesis and transcriptional regulation of neuronal genes concurrent with histone modifications. However, little is known about the relationship between histone H3 lysine 9 acetylation (H3K9ac) and BRG1 in response to heroin. The present study aimed to assess the contribution of histone 3 lysine 9 acetylation of BRG1 to heroin self­administration. The present study established a Sprague­Dawley rat model of heroin self­administration under a fixed­ratio­1 paradigm. Chromatin immunoprecipitation followed by reverse transcription­quantitative PCR (RT­qPCR) was used to detect the accumulation of H3K9ac on BRG1 in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) following heroin self­administration. The relative expression levels of BRG1 were analyzed by RT­qPCR. H3K9ac at the promoter region of BRG1 was significantly elevated (P=0.002), and the expression of BRG1 in the mPFC increased 1.47­fold in the heroin self­administration group compared with the control group. No significant difference in H3K9ac at the BRG1 locus was observed in the NAc (P=0.323), with the expression of BRG1 decreasing 1.38­fold in the heroin self­administering rats compared with the control group. H3K9ac is associated with transcriptional activation, and the increased BRG1 expression suggested an essential and novel role for BRG1 and its H3K9ac­mediated regulation in the mPFC after heroin self­administration; and this may function through epigenetically modulating the activation of neuroplasticity­associated genes. This association may provide a novel therapeutic target for the treatment of heroin addiction.


Assuntos
DNA Helicases/metabolismo , Dependência de Heroína/metabolismo , Heroína/administração & dosagem , Histonas/metabolismo , Lisina/metabolismo , Córtex Pré-Frontal/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Imunoprecipitação da Cromatina , DNA Helicases/genética , Epigênese Genética , Dependência de Heroína/genética , Código das Histonas , Masculino , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Autoadministração , Fatores de Transcrição/genética , Ativação Transcricional
13.
Addict Biol ; 25(4): e12793, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339209

RESUMO

Postretrieval extinction procedures are effective nonpharmacological interventions for disrupting drug-associated memories. Nonetheless, the conditioned stimulus (CS) memory retrieval-extinction procedure is ineffective in inhibiting drug craving and relapse after prolonged withdrawal, which significantly undermines its therapeutic potential. In the present study, we showed that, unlike the CS memory retrieval-extinction procedure, noncontingent heroin injections (unconditioned stimulus [UCS]) 1 hour before the extinction sessions decreased the heroin-priming-induced reinstatement, renewal, and spontaneous recovery of heroin seeking after 28 days of withdrawal (ie, remote heroin-associated memories) in rats. The UCS retrieval manipulation induced reactivation of the basolateral amygdala (BLA) after prolonged withdrawal, and this reactivation was absent with the CS retrieval manipulation. Chemogenetic inactivation of the BLA abolished the inhibitory effect of the UCS memory retrieval-extinction procedure on heroin-priming-induced reinstatement after prolonged withdrawal. Furthermore, the combination of chemogenetic reactivation of BLA and CS retrieval-extinction procedure resembled the inhibitory effect of UCS retrieval-extinction procedure on heroin seeking after prolonged withdrawal. We also observed that the inhibitory effect of the UCS retrieval-extinction procedure is mediated by regulation of AMPA receptor endocytosis in the BLA. Our results demonstrate critical engagement of the BLA in reconsolidation updating of heroin-associated memory after prolonged withdrawal, extending our knowledge of the boundary conditions of the reconsolidation of drug-associated memories.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/fisiologia , Dependência de Heroína/metabolismo , Heroína/farmacologia , Consolidação da Memória/fisiologia , Entorpecentes/farmacologia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/fisiologia , Endocitose , Dependência de Heroína/fisiopatologia , Masculino , Ratos , Receptores de AMPA/metabolismo , Fatores de Tempo
14.
J Neuroimmune Pharmacol ; 15(3): 400-408, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31828734

RESUMO

Exosomes play an important role in cell-to-cell communication as they can transfer functional molecules such as microRNAs (miRNAs) from one cell to another, exerting biological and immunological functions. Here, we investigated the impact of HIV infection and/or heroin use on the expression of the miRNAs in plasma exosomes. We found that HIV infection or heroin use upregulated the majority (98%) of a panel of plasma exosomal miRNAs associated with immune regulation and inflammation. We also observed the enhanced effect of HIV infection and heroin use on some of these upregulated miRNAs. Our further investigation showed that the levels of four of neuro-inflammation-related miRNAs (146a, 126, 21, and let-7a) were higher in HIV-infected heroin users as compared with the control subjects. These findings indicate that the dysregulations of the plasma exosomal miRNAs support further studies to determine the role of the miRNAs in HIV and/or heroin use-mediated immune modulation and neuro-inflammation. Graphical abstract.


Assuntos
Exossomos/metabolismo , Infecções por HIV/genética , Infecções por HIV/metabolismo , Dependência de Heroína/genética , Dependência de Heroína/metabolismo , MicroRNAs/sangue , Adulto , Comunicação Celular , Encefalite/genética , Encefalite/metabolismo , Feminino , Infecções por HIV/imunologia , Dependência de Heroína/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Regulação para Cima , Adulto Jovem
15.
J Neuropathol Exp Neurol ; 78(11): 1059-1065, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31559425

RESUMO

The aim of the study was to investigate blood-brain barrier alterations, neuroinflammation, and glial responses in drug abusers. Five immunohistochemical markers (CD3, zonula occludens-1 [ZO-1], intracellular adhesion molecule 1 [ICAM-1], vascular cell adhesion molecule [VCAM-1], and glial fibrillary acidic protein [GFAP]) were assessed on postmortem brain samples collected from drug abusers who died from acute intoxication of cocaine, heroin, or a combination of both, compared with controls. CD3 and ICAM-1 immunopositivity were significantly stronger in drug abusers than in controls. VCAM-1 immunopositivity was similar across drug abuser and control groups. In heroin abusers, significantly lower ZO-1 immunopositivity was observed relative to controls. GFAP positivity did not show significant differences between groups, but its distribution within the brain did differ. Both cocaine and heroin abuse promoted neuroinflammation, increasing expression of ICAM-1 and recruiting CD3+ lymphocytes. Heroin affected the molecular integrity of tight junctions, as reflected by reduced ZO-1 expression. The outcomes of the present study are, overall, consistent with prior available evidence, which is almost exclusively from studies conducted in vitro or in animal models. These findings provide important information about the downstream consequences of neuroinflammation in drug abusers and may help to inform the development of potential therapeutic targets.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Transtornos Relacionados ao Uso de Cocaína/patologia , Encefalite/patologia , Dependência de Heroína/patologia , Adolescente , Adulto , Autopsia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Transtornos Relacionados ao Uso de Cocaína/complicações , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Overdose de Drogas/metabolismo , Overdose de Drogas/patologia , Encefalite/etiologia , Encefalite/metabolismo , Feminino , Dependência de Heroína/complicações , Dependência de Heroína/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Adulto Jovem
16.
Physiol Res ; 68(5): 835-844, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31424247

RESUMO

Opiate addiction has a high rate of relapse. The accumulating evidence shows that electroacupuncture (EA) may be effective for the treatment of opiate relapse. However, the change of expression of CB1-Rs and CB2-Rs involve in 2Hz EA anti-relapse pathway is still unclear. To explore the changes of expression of CB1-Rs and CB2-Rs, heroin self-administration (SA) model rats were adopted and treated using 2Hz EA. The expressions of CB1-Rs and CB2-Rs were observed using immunohistochemistry method. The results showed that, compared with the control group, active pokes in the heroin-addicted group increased, while the active pokes decreased significantly in 2Hz EA group compared with heroin-addicted group. Correspondingly, the expression of CB1-Rs in prefrontal cortex (PFC), hippocampus (Hip), nucleus accumbens (NAc) and ventral tegmental area (VTA) all increased significantly while the expression of CB2-Rs in those relapse-relevant brain regions decreased obviously in heroin-addicted group when compared with the control group. In addition, the expression of CB1-Rs obviously decreased in the 2Hz EA group while the expression of CB2-Rs in those relapse-relevant brain regions increased significantly when compared with the heroin-addicted group. It indicated that 2Hz EA could attenuate the heroin-evoked seeking behaviors effectively. The anti-relapse effects of 2Hz EA might be related to the decrease of CB1-Rs and increase of CB2-Rs expression in relapse-relevant brain regions of heroin SA rats.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Eletroacupuntura , Dependência de Heroína/terapia , Heroína/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Extinção Psicológica/efeitos dos fármacos , Dependência de Heroína/metabolismo , Dependência de Heroína/fisiopatologia , Dependência de Heroína/psicologia , Locomoção/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Recidiva , Autoadministração , Transdução de Sinais
17.
Eur Psychiatry ; 59: 15-24, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981746

RESUMO

BACKGROUND: Stimulant drugs can cause persistent changes in the brain. Imaging studies show that these changes are most apparent in dopamine transporter (DAT) or receptor availability within the striatum. METHODS: This work focuses on influences of stimulant use on dopaminergic function assessed using nuclear-medicine imaging (PET/SPECT). Included are 39 studies on 655 cocaine, amphetamine, methamphetamine or nicotine users, as well as 690 healthy controls. Metaanalyses were conducted separately for D2/D3 receptors and dopamine transporters of the entire striatum, its subregions caudate and putamen respectively. RESULTS: Meta-analyses results regarding nicotine did not show significant effects between smokers and nonsmokers. In cocaine users there was a significant decrease in dopamine receptor availability in all regions. The striatal DAT availability was significantly increased in cocaine users. Methamphetamine users showed a significantly decreased dopamine receptor and transporter density in all regions. Significant results also indicate a lower transporter availability in all regions. Amphetamine users showed reduced DAT availability in the striatum, as well as in the sub regions. CONCLUSION: This meta-analysis provides evidence that there are ongoing changes in the dopaminergic system associated with the use of stimulants. Especially the results of cocaine, methamphetamine and amphetamine use mainly showed a downregulation. In addition, this meta-analysis is the first to include nicotine. This subset of studies showed evidence for a decreased receptor and DAT availability but no significant results were found in the metaanalyses.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dependência de Heroína/metabolismo , Metanfetamina/metabolismo , Receptores de Dopamina D2/metabolismo , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Humanos , Neostriado/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único
18.
Sci Rep ; 9(1): 4980, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899073

RESUMO

Heroin use disorder (HUD) is a complex disease resulting from interactions among genetic and other factors (e.g., environmental factors). The mechanism of HUD development remains unknown. Newly developed network medicine tools provide a platform for exploring complex diseases at the system level. This study proposes that protein-protein interactions (PPIs), particularly those among proteins encoded by casual or susceptibility genes, are extremely crucial for HUD development. The giant component of our constructed PPI network comprised 111 nodes with 553 edges, including 16 proteins with large degree (k) or high betweenness centrality (BC), which were further identified as the backbone of the network. JUN with the largest degree was suggested to be central to the PPI network associated with HUD. Moreover, PCK1 with the highest BC and MAPK14 with the secondary largest degree and 9th highest BC might be involved in the development HUD and other substance diseases.


Assuntos
Dependência de Heroína/metabolismo , Mapas de Interação de Proteínas , Alcoolismo/metabolismo , Anfetamina/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Predisposição Genética para Doença , Dependência de Heroína/genética , Humanos , Masculino
19.
Neuropsychopharmacology ; 43(13): 2615-2626, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30283001

RESUMO

Opioid abuse is a rapidly growing public health crisis in the USA. Despite extensive research in the past decades, little is known about the etiology of opioid addiction or the neurobiological risk factors that increase vulnerability to opioid use and abuse. Recent studies suggest that the type 2 metabotropic glutamate receptor (mGluR2) is critically involved in substance abuse and addiction. In the present study, we evaluated whether low-mGluR2 expression may represent a risk factor for the development of opioid abuse and addiction using transgenic mGluR2-knockout (mGluR2-KO) rats. Compared to wild-type controls, mGluR2-KO rats exhibited higher nucleus accumbens (NAc) dopamine (DA) and locomotor responses to heroin, higher heroin self-administration and heroin intake, more potent morphine-induced analgesia and more severe naloxone-precipitated withdrawal symptoms. In contrast, mGluR2-KO rats displayed lower motivation for heroin self-administration under high price progressive-ratio (PR) reinforcement conditions. Taken together, these findings suggest that mGluR2 may play an inhibitory role in opioid action, such that deletion of this receptor results in an increase in brain DA responses to heroin and in acute opioid reward and analgesia. Low-mGluR2 expression in the brain may therefore be a risk factor for the initial development of opioid abuse and addiction.


Assuntos
Deleção de Genes , Dependência de Heroína/metabolismo , Heroína/administração & dosagem , Receptores de Glutamato Metabotrópico/deficiência , Esquema de Reforço , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Dependência de Heroína/genética , Dependência de Heroína/psicologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Transgênicos , Ratos Wistar , Receptores de Glutamato Metabotrópico/genética , Autoadministração
20.
Neuropharmacology ; 139: 26-40, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29964093

RESUMO

Environmental factors profoundly affect the addictive potential of drugs of abuse and may also modulate the neuro-anatomical/neuro-chemical impacts of uncontrolled drug use and relapse propensity. This study examined the impact of environmental enrichment on heroin self-administration, addiction-related behaviors, and molecular processes proposed to underlie these behaviors. Male Sprague-Dawley rats in standard and enriched housing conditions intravenously self-administered similar amounts of heroin over 14 days. However, environmental enrichment attenuated progressive ratio, extinction, and reinstatement session responding after 14 days of enforced abstinence. Molecular mechanisms, namely DNA methylation and gene expression, are proposed to underlie abstinence-persistent behaviors. A global reduction in methylation is reported to coincide with addiction, but no differences in total genomic methylation or repeat element methylation were observed in CpG or non-CpG (CH) contexts across the mesolimbic circuitry as assessed by multiple methods including whole genome bisulfite sequencing. Immediate early gene expression associated with drug seeking, taking, and abstinence also were examined. EGR1 and EGR2 were suppressed in mesolimbic regions with heroin-taking and environmental enrichment. Site-specific methylation analysis of EGR1 and EGR2 promoter regions using bisulfite amplicon sequencing (BSAS) revealed hypo-methylation in the EGR2 promoter region and EGR1 intragenic CpG sites with heroin-taking and environmental enrichment that was associated with decreased mRNA expression. Taken together, these findings illuminate the impact of drug taking and environment on the epigenome in a locus and gene-specific manner and highlight the need for positive, alternative rewards in the treatment and prevention of drug addiction.


Assuntos
Meio Ambiente , Dependência de Heroína/metabolismo , Dependência de Heroína/terapia , Animais , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Heroína/administração & dosagem , Abrigo para Animais , Masculino , Entorpecentes/administração & dosagem , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...